If it's not what You are looking for type in the equation solver your own equation and let us solve it.
46v^2+25v=0
a = 46; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·46·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*46}=\frac{-50}{92} =-25/46 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*46}=\frac{0}{92} =0 $
| q−5.4=4.4 | | X=42-x-6 | | 1,2x=42 | | h-3/4=9 | | 2(y-5)=-18 | | 4.5+x=5 | | t-5/7=1/7 | | q-1/9=2/9 | | 7h=(2h−18) | | y=0.26y=0.676 | | 10+15+12+x=360 | | –82=w+–11 | | 4a/7=4 | | 2/r=5/6 | | 1.03/0.003=0.43/p-0.002 | | 4(x+3)=9x-33 | | 0.5x+19=14 | | -7x+7=-15x-1 | | -5x+1=-9x-3 | | 4a³-6a²+1=0 | | –5g−10=7g+2 | | 3x+4=11x+36 | | 27=6j-3 | | 8x-4=20.|-3 | | (9x-16)(7x-5)=(3x+11) | | X=22,y | | Y=3x-5;(7,15) | | 0.5*x+0.5*x=x-2 | | (15x-13)=(9x+11) | | 3(v+1)−3=6 | | 5x^2+18x+35=-22x | | (A)(B)=(8x-44) |